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Abstract
We define a quantity, the so-called purity fidelity, which measures the
rate of dynamical irreversibility due to decoherence, observed e.g. in echo
experiments, in the presence of an arbitrary small perturbation of the total
(system + environment) Hamiltonian. We derive a linear response formula
for the purity fidelity in terms of integrated time correlation functions of the
perturbation. Our relation predicts, similar to the case of fidelity decay, that the
faster the decay of purity fidelity the slower is the decay of time correlations.
In particular, we find exponential decay in quantum mixing regime and faster,
initially quadratic and later typically Gaussian decay in the regime of non-
ergodic, e.g. integrable quantum dynamics. We illustrate our approach by an
analytical calculation and numerical experiments in the Ising spin 1/2 chain
kicked with tilted homogeneous magnetic field where part of the chain is
interpreted as a system under observation and part as an environment.

PACS numbers: 03.65.Yz, 03.65.Sq, 05.45.Mt

1. Introduction

The relation between the rate of decoherence and the nature of dynamics is one of the
central issues in quantum mechanics of non-integrable systems. Zurek proposed [1–3] several
quite intuitive results bridging between the mechanisms of classical chaotic dynamics and
quantum interference. In particular, it has been shown [3] that von Neumann entropy of
the reduced (environment averaged) density matrix of an open quantum system (system +
environment) grows (on a short timescale) with the rate given by the Lyapunov exponents of
the corresponding classical dynamics.

However, this is expected to be true only under two rather severe conditions: (1) the system
has to be initially prepared in a ‘coherent’ state (i.e. minimum uncertainty wave packet) and
(2) one has to be deep in the semi-classical regime of very small effective Planck constant
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h̄ since the timescale of expected quantum–classical correspondence of the entropy growth,
namely the Ehrenfest time, scales as tE ∝ log(1/h̄). Indeed, performing real or even numerical
experiments within this regime appears to be very difficult, see e.g. the numerical experiment
in an N-atom Jaynes–Cummings model [4], where a difference of the entropy growth between
integrable and classically chaotic cases has been observed, but its qualitative nature does not
become clear.

On the other hand, by rejecting assumption (1) on the coherent initial state but considering
a random pure initial state instead, one can use orthogonal/unitary invariance and define simple
random matrix models to analyse the time evolution of decoherence [5], and no qualitative
and minimal quantitative differences between regular and chaotic dynamics were observed.
Furthermore, we should stress that in quantum information science considering random initial
states is potentially much more useful. Indeed, in order to use a massive parallelism of
quantum computation one has to prepare the quantum computer system initially in a coherent
superposition (pure state) of as many elementary qubit (basis) states as possible, but to contain
maximal information this state can and should be any possible state and thus will behave more
like a random state than like a Gaussian wave packet.

Based on a proposition by Peres [6], there has been much interest in viewing reversibility
of a process with an imperfection on the reversed time evolution rather than on the state as
discussed by Casati et al [7]. This allows us to avoid some of the essential implications of
linearity of quantum mechanics that trivialize the latter case. The related state correlation
function is usually called fidelity. Its behaviour for chaotic systems on the Ehrenfest timescale
has first been discussed in [8] with similar findings as in [1–3]. On the other hand, it has
been found recently [9–11] that on more relevant timescales related to the decay of correlation
functions of quantum observables in the mixing case the fidelity decay is indeed exponential,
but with a very different exponent, which is determined basically by the strength of the
perturbation. This result was obtained for any state and, what is more, for the integrable case
a faster Gaussian decay was found in the thermodynamic limit [9]. More strictly speaking,
the result implied for small times or small perturbation strengths linear decay behaviour in the
mixing case and quadratic decay in the integrable or more generally non-ergodic case, where
‘small times’ may still be large compared to the perturbative regime where all dependences
are quadratic anyway. It should be stressed that the fidelity can essentially be interpreted as
an autocorrelation function in the interaction picture and the universal initial quadratic decay
in the perturbative regime is known as the quantum Zeno effect. However, in the present paper
and in the previous works [9–11] we are interested in longer timescales, much beyond the
Zeno regime, where any surviving quadratic decay has its dynamical origin.

Decoherence often follows correlation functions and in the present situation decoherence
should behave along the same lines as fidelity. Yet it is worthwhile to test this, as understanding
decoherence is essential for the quantum information applications. The central issue of this
paper is thus to test the evolution of decoherence of echoes (some aspects of which are relevant
in the real spin–echo experiments [12]). Indeed it is crucial to determine if fidelity is a reliable
measure. This is all the more true because of the counter-intuitive result that fidelity is higher
for mixing systems than for integrable ones. Due to the great interest in quantum information
problems we shall mainly focus on random states for the reason pointed out above.

Basically, we follow previous work on fidelity [9–11] and express our results on
decoherence by time correlation functions of quantum observables, though we shall have
to generalize the concept of correlation function slightly. We shall use the purity [2] (which is
one minus the linear entropy or idempotency defect used in [4]) instead of the von Neumann
entropy as a measure of decoherence, because purity, being an analytic function of the density
matrix, is much easier to handle. Rather than introducing non-unitary time evolution we follow
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the simpler way used in [4, 5] of partial tracing over the environment in a product Hilbert
space after unitary time evolution. The kicked spin chain will serve as a specific example for
our considerations, where analytic calculations for the integrable case can be carried further
and numerics will confirm the validity of our approximations.

The unitary propagator U of the total system (central system + environment) can be either
a short time-propagator U = exp(−iH�t/h̄), a Floquet map U = T̂ exp

(−i
∫ p

0 dτH(τ)/h̄
)

for a periodically time-dependent Hamiltonian H (H(τ +p) = H(τ)) or any abstract quantum
map. We only assume that the total Hilbert space H (the domain of U) can be written as a
direct product of two parts,

H = Hc ⊗ He. (1)

In what follows, the subscripts ‘c’ and ‘e’ will denote quantities referring to the central system
and the environment, respectively, and to the total system when no subscript is attached.

As mentioned above we shall not introduce a non-unitary time evolution, but just consider
the decoherence induced in the central system by its entanglement with the environment and
then perform partial traces over the latter. In other words, we shall test the stability of the
disentanglement caused by the inverse time evolution operator if this operator is perturbed.
This perturbation can generally be described by some self-adjoint operatorA over H and some
perturbation strength δ to yield

Uδ = U exp(−iAδ/h̄). (2)

Our perturbation is static (the generator A has no explicit time dependence) and cannot be
associated with noise since it is not due to the coupling to the environment (which is explicitly
included from the outset) but stems from the imperfect (or unknown) description of the total
Hamiltonian.

First, let us consider coherent quantum evolution of the total system, and define the fidelity
as an overlap between states evolving under unperturbed and perturbed time evolution,

F(t) = 〈ψδ(t)|ψ(t)〉 = 〈ψ|U−t
δ U

t |ψ〉 (3)

where our time t is an integer. Fidelity has become a standard measure of instability of quantum
computation [13], but has also been considered in a more abstract context as a measure for
the instability of quantum dynamics [6, 8–11, 14–19]. It has recently been pointed out [9–11]
that fidelity is intimately related to the decay of correlations, and that, surprisingly enough, the
faster the fidelity decay the slower is the decay of correlations. However, fidelity is a property
of a pure state of the total system which is typically not accessible. What can de facto be
measured is only the information relating to the reduced density operator

ρc(t) = Tre|ψ(t)〉〈ψ(t)| (4)

where Tre is a partial trace over the environmental degrees of freedom He.
We now have to obtain an extension of the concept of fidelity in order to measure coherence

properties of the reduced density matrix. Assume we prepare our system in a pure product
(disentangled) state

|ψ〉 = |ψc〉 ⊗ |ψe〉 (5)

such that the reduced density matrix is also pure ρc(0) = |ψc〉〈ψc|. Then we propagate
our system for some time t, after which the state Ut |ψ〉 becomes generally an entangled
superposition of system and environment states. We then invert time, i.e. we change the sign
of the Hamiltonian with a small inaccuracy described by the operatorA (2), and propagate the
system backwards for the same amount of time arriving at the final ‘echo’ state,

|φ(t)〉 = U−t
δ U

t |ψ〉. (6)



4710 T Prosen and T H Seligman

The overlap between the initial and the final state would be just a fidelity (3), F(t) = 〈φ(t)|ψ〉,
however here we are interested in only to what extent has the final state disentangled from the
environment, i.e. how much the final reduced density operator

ρecho
c (t) = Tre|φ(t)〉〈φ(t)| (7)

deviates from a pure state. This is best quantified in terms of a purity, Trρ2, which is equal to
1 for a pure state and less than 1 otherwise. The minimal value of purity is 1/Nc where Nc

is the dimension of Hc; note that this limiting value can only be reached if the dimension of
the environment Ne tends to infinity. For finite-dimensional environment space, we find later
a more accurate limiting value (34) (see also [5]). We shall therefore study the purity fidelity
defined as the purity of an echoed reduced state

FP(t) = Trc
[
ρecho

c (t)
]2 = Trc

[
Tre

(
U−t
δ U

t |ψc〉|ψe〉〈ψc|〈ψe|U−tU t
δ

)]2
. (8)

In section 2 we shall make our main theoretical predictions on purity fidelity in relation to
ergodic properties of dynamics and in particular to the correlation decay. In section 3 we shall
apply our results in the quantum spin chain model, namely the Ising spin 1/2 chain kicked
with a tilted homogeneous magnetic field, which exhibits all qualitatively different regimes
of quantum dynamics ranging from integrable to mixing. In section 4 we shall discuss some
implications of our results and conclude.

2. The relation between purity fidelity and correlation decay

2.1. Linear response

Following [9–11] we start from time-dependent perturbation theory (linear response) and
expand the purity fidelity in a power series in the perturbation strength. It is convenient to write
the complete basis of H as |j, ν〉, where Latin/Greek indices running over Nc,e = dimHc,e

values denote system/environmental degrees of freedom, such that the initial state is always
designated as |1, 1〉 = |ψc〉 ⊗ |ψe〉. First, let us rewrite the purity fidelity,

FP(t) = Trc[Tre(Mt |ψc〉|ψe〉〈ψc|〈ψe|M†
t )]

2 (9)

=
∑
j,k,µ,ν

〈j, µ|Mt |1, 1〉〈1, 1|M†
t |k, µ〉〈k, ν|Mt |1, 1〉〈1, 1|M†

t |j, ν〉 (10)

in terms of a unitary fidelity operator

Mt = U−t
δ U

t . (11)

Second, we observe [9] that the fidelity operator can be rewritten in terms of the perturbing
operator in the Heisenberg picture At = U−tAUt , namely

Mt = exp(iA0δ/h̄) exp(iA1δ/h̄) · · · exp(iAt−1δ/h̄). (12)

This expression can be formally expanded into a power series,

Mt = 1 +
∞∑
m=1

imδm

m!h̄m
T̂

t∑
t1,...,tm=1

At1At2 · · ·Atm (13)

which always converges (in the strong limit sense) provided the generator A is a bounded
operator. The symbol T̂ denotes a left-to-right time ordering of operator products. Third,
we truncate expression (13) at the second order of δ2 and plug it into expression (9). After a
tedious but straightforward calculation, we find

FP(t) = 1 − 2δ2

h̄2

t−1∑
t ′,t ′′=0

j �=1∑
j

ν �=1∑
ν

〈1, 1|At ′ |j, ν〉〈j, ν|At ′′ |1, 1〉 + O(δ4). (14)
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The RHS of this linear response formula indeed looks much like a time correlation function,
however with funny exclusion rules on the state summation. It can be written more elegantly
in a basis independent way as

FP(t) = 1 − 2δ2

h̄2 Tr
[
ρ

∑
Atρ̃

∑
At

]
+ O(δ4) (15)

where
∑
At ≡ ∑t−1

t ′=0At ′ , ρ = |ψ〉〈ψ|, and ρ̃ = (1c − |ψc〉〈ψc|) ⊗ (1e − |ψe〉〈ψe|). Our
expectation is that the properties of purity fidelity decay will mainly depend on dynamics,
i.e. the behaviour of the operator

∑
At , and less on the detailed structure of the initial state

encoded in ρ and ρ̃. Let us first discuss the limiting qualitatively different cases of dynamics.

2.1.1. Regime of ergodicity and mixing. In the regime of ergodic and mixing quantum
dynamics [20], the reduced transport coefficient

σ̃ = lim
t→∞

1

2t
Tr

[
ρ

∑
Atρ̃

∑
At

]
(16)

can be estimated in terms of the usual Kubo transport coefficient

σ = lim
t→∞

1

2t

t−1∑
t ′,t ′′=0

Tr[ρAt ′At ′′ ] (17)

which is obviously finite σ < ∞ in the case of mixing dynamics and sufficiently strong decay
of time correlations. Namely, one can easily prove that 0 � σ̃ � σ since all the terms of σ
missing in σ̃ , as well as all the terms of σ̃ when expanding along (14), are non-negative. For
times t larger than a certain mixing time tmix, t > tmix, i.e. a characteristic timescale on which
the limiting process (16) converges, we thus find a linear decay of purity fidelity

FP(t) = 1 − 4δ2

h̄2 σ̃ t + O(δ4) = 1 − 4t

τ̃em
+ O(δ4) (18)

on a timescale

τ̃em = h̄2

δ2σ̃
∝ δ−2. (19)

2.1.2. Non-ergodic regime. In the opposite regime of non-ergodic (e.g. integrable) quantum
dynamics, the non-trivial (e.g. different from a multiple of identity) time-averaged operator
exists,

Ā = lim
t→∞

1

t

∑
At (20)

so that for times larger than a certain averaging time t > tave, i.e. a characteristic timescale on
which the limiting process (20) converges, we find a quadratic decay of purity fidelity

FP(t) = 1 − 2δ2

h̄2 D̃t
2 + O(δ4) = 1 − 2

(
t

τ̃ne

)2

+ O(δ4) (21)

with a coefficient which we name as reduced stiffness

D̃ = Tr[ρĀρ̃Ā] (22)

on a timescale

τ̃ne = h̄

δ
√
D̃

∝ δ−1. (23)
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We note that our reduced stiffness coefficient is again rigorously bounded by the common
(non-reduced) stiffness

D = Tr[ρĀ2] − Tr[ρĀ]2 (24)

namely D̃ � D.
It should be stressed that this regime of non-ergodic dynamics covers not only the

integrable cases but also the more general intermediate cases of (classically) mixed systems.
Namely, in a generic mixed system one should expect that typical observables would have
non-trivial time-averages Ā, and so typicallyD �= 0, D̃ �= 0 unlike in an ergodic system where
D = D̃ = 0 for all suitable observables A.

2.2. Beyond the linear response

Next we extend our linear-response results to the regime, where the value of purity fidelity
becomes considerably lower than 1. Again we consider the two qualitatively different cases
of dynamics.

2.2.1. Regime of ergodicity and mixing. Here we assume, in full analogy with the derivation
of fidelity decay [9, 11], that also the property of quantum n-mixing holds (in the asymptotics
N → ∞), namely that all the higher n-point time correlation functions factorize so that the
δ-expansion of the fidelity operator can be summed up and in the weak limit sense we obtain

et/τemMt → 1 as t � tmix where τem = h̄2

δ2σ
. (25)

This statement is equivalent to the statement shown in [9, 11] that for arbitrary (pure or mixed)
state ρ, fidelity decay F(t � tmix) = TrρMt = exp(−t/τem) is independent of the state.
In the case of a semi-classical situation of small effective value of h̄ the limit (25) starts to
build up [11] only after the Ehrenfest time tE, tE = ln(1/h̄)/λ, where λ is the largest classical
Lyapunov exponent, so then tmix = tE. Of course, (25) never holds in the strong limit sense as
the fidelity operatorMt is unitary. Plugging (25) into formula (9) we obtain for the asymptotic
exponential decay of purity fidelity

FP(t) = exp(−4t/τem) as t � tmix. (26)

Comparing equations (26) and (18) in the asymptotic regime t → ∞ while approaching
δ → 0 so as to remain in the regime of linear response, we find that we must have strictly
τ̃em = τem, i.e.

σ̃ = σ. (27)

Of course, this argument is correct only for sufficiently strong mixing, e.g. for exponential
decay of correlations. For weaker forms of mixing, e.g. for power-law decay of correlations,
one may not strictly justify equation (25) by summing up equation (13) to all orders, though
it may still be correct in some cases, e.g. due to sufficiently high power of decay or due
to alternating signs in correlation functions. In other cases, one may find anomalous non-
exponential decay of the fidelity or the fidelity operator.

2.2.2. Non-ergodic regime. Again, in analogy to the simple fidelity decay in non-
ergodic situations [9, 11], we can rewrite the fidelity operator in terms of the time-averaged
operator Ā,

Mt → exp(iĀtδ/h̄) as t � tave. (28)
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Plugging the fidelity operator (28) into formula (9) we find that, as a manifestation of non-
ergodicity, the behaviour of purity fidelity generally depends on the structure of the initial
state.

2.3. State-averaged purity fidelity

As we stated in the introduction, we are interested in the behaviour of a random initial state
of the central system and as far as the environment is concerned we as well average over
states to reflect our ignorance of the latter. Let us therefore start with a random product initial
state (5) implying that the states |ψc〉 and |ψe〉 are random Nc and Ne dimensional vectors,
whose components 〈j |ψc〉 and 〈µ|ψe〉 are, in the limits Nc → ∞ and Ne → ∞, independent
complex random Gaussian variables with variance 1/Nc and 1/Ne, respectively. Denoting
averaging over random product initial states as 〈·〉ψ one can easily average the linear response
formula (14),

〈FP(t)〉ψ = 1 − 2δ2NcNe

h̄2(Nc + 1)(Ne + 1)

t−1∑
t ′,t ′′=0

CP(t
′, t ′′) + O(δ4) (29)

expressing the purity fidelity decay in terms of a sum of reduced correlation function

CP(t
′, t ′′) = 〈At ′At ′′ 〉 + 〈A〉2 − 〈〈At ′ 〉e〈At ′′ 〉e〉c − 〈〈At ′ 〉c〈At ′′ 〉c〉e (30)

where 〈·〉c ≡ (1/Nc)Trc(·), 〈·〉e ≡ (1/Ne)Tre(·) and 〈·〉 ≡ 〈〈·〉e〉c = (1/N )Tr(·).
Again, in the ergodic and mixing regime, where correlation functions (30) decay fast

as |t ′′ − t ′| → ∞, the average purity fidelity exhibits initial linear decay (18) with average
transport coefficient

〈σ̃ 〉ψ = lim
t→∞

1

2t

t−1∑
t ′,t ′′=0

CP(t
′, t ′′). (31)

Since, for sufficiently strong mixing we have (27), 〈σ 〉ψ = limt→∞ 1
2t

∑t−1
t ′,t ′′=0 C(t

′ − t ′′) =
〈σ̃ 〉ψ , where C(t) = 〈AtA〉 − 〈A〉2, then limt→∞ 1

t

∑t−1
t ′,t ′′=0(C(t

′ − t ′′)−CP(t
′, t ′′)) = 0. We

note again that all the results referring to the ergodic and mixing regime implicitly assume the
limits Nc,Ne → ∞ to be considered before t → ∞.

On the other hand, in the non-ergodic regime we have quadratic initial decay (21) with
state-averaged reduced stiffness

〈D̃〉ψ = NcNe

(Nc + 1)(Ne + 1)

(〈Ā2〉 + 〈Ā〉2 − 〈〈Ā〉2
c

〉
e − 〈〈Ā〉2

e

〉
c

)
. (32)

Without making reference to any of the two extreme cases, the general expression for the
purity fidelity (10) may be simply state averaged while keeping the fidelity operator completely
general:

〈FP(t)〉ψ = Nc + Ne

(Nc + 1)(Ne + 1)
+

1

Ne(Ne + 1)Nc(Nc + 1)

×
∑

j,k,p,q,α,β,µ,ν

(〈p, α|Mt |j, ν〉〈j, µ|M†
t |q, α〉〈q, β|Mt |k, µ〉〈k, ν|M†

t |p, β〉

+ 〈p, α|Mt |j, ν〉〈k, ν|M†
t |q, α〉〈q, β|Mt |k, µ〉〈j, µ|M†

t |p, β〉). (33)

From (33) one observes that (averaged) purity fidelity does not decay to zero. It has a finite
saturation plateau valueF ∗, which can be estimated by assuming that after a long time t and for
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sufficiently strong perturbation δ (such that the eigenstates of Uδ look random in the basis of
eigenstates of U) the fidelity operatorMt becomes a matrix of independent Gaussian random
variables. Then the average of the product of four matrix elements (33) can be estimated by a
pair-contraction rule with 〈〈p, α|Mt |j, ν〉〈q, β|M†

t |k, µ〉〉 = 1
NeNc

δpkδαµδqj δβν as

F ∗ = Nc + Ne + 4 + O(1/Nc) + O(1/Ne)

(Nc + 1)(Ne + 1)
. (34)

We have defined a reasonable measure for decoherence for the echo process and have
determined that purity decays faster for a near integrable system than for a mixing one. This
fact is quite surprising in view of previous results on decoherence, but not so much if we
consider that it follows closely the results obtained for fidelity. We will proceed to apply our
findings to a kicked Ising spin chain.

3. Kicked Ising chain

We shall now consider the application of purity fidelity decay in a class of model systems,
namely one-dimensional spin 1/2 chains. We consider a chain of L spins described by
Pauli operators σαj , j ∈ {0, 1, . . . , L − 1}, α ∈ {x, y, z}, with periodic boundary conditions
σαj+L ≡ σαj . In particular, we concentrate on the example of the kicked Ising (KI) model [9]
with the Hamiltonian

HKI(t) =
L−1∑
j=0

{
Jzσ

z
j σ

z
j+1 + δp(t)

(
hxσ

x
j + hzσ

z
j

)}
(35)

where δp(t) = ∑∞
m=−∞ δ(t −mp) is a periodic delta function, generating the Floquet-map

U = exp


−iJz

∑
j

σ zj σ
z
j+1


 exp


−i

∑
j

(
hxσ

x
j + hzσ

z
j

) (36)

where we take units such that p = h̄ = 1, depending on a triple of independent parameters
(Jz, hx, hz). KI is completely integrable for longitudinal (hx = 0) and transverse (hz = 0)
fields [21], and has finite parameter regions of ergodic and non-ergodic behaviour in the
thermodynamic limit L → ∞ for a tilted field (see figure 1). The non-trivial integrability of
a transverse kicking field, which somehow inherits the solvable dynamics of its well-known
autonomous version [22], is quite remarkable since it was shown [21] that the Heisenberg
dynamics can be calculated explicitly for observables which are bilinear in Fermi operators
cj = (

σ
y

j − iσ zj
)∏j ′<j

j ′ σxj ′ with time correlations C(t) decaying to the non-ergodic stationary
values D as |C(t) − D| ∼ t−3/2. In order to test our predictions of purity fidelity decay
by explicit calculation and/or numerical experiment, we consider a line in three-dimensional
parameter space, with fixed Jz = 1, hx = 1.4 and varying hz exhibiting all different types
of dynamics: (a) integrable for hz = 0, (b) intermediate (non-integrable and non-ergodic)
for hz = 0.4 and (c) ergodic and mixing for hz = 1.4. In all cases, we fix the operator
A = M := ∑

j σ
x
j which generates the following parametric perturbation of the KI model

with

hx → hx +

(
h2
x + h2

zh cot h
)

h2
δ + O(δ2)

(37)
hz → hz +

hxhz(1 − h cot h)

h2
δ + O(δ2) where h =

√
h2
x + h2

z

and vary the size L and the perturbation strength δ.
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Figure 1. Correlation decay for three cases of KI: (a) integrable hz = 0, (b) intermediate hz = 0.4
and (c) ergodic hz = 1.4, for different sizes L = 20, 16, 12 (solid–dotted connected curves, almost
indistinguishable in (a) and (b)). Circles (a) show the exact L = ∞ result. Chain lines are
theoretical/suggested asymptotics (see text).

For the sake of mathematical simplicity of the model, we do not want to introduce extra
degrees of freedom to simulate the environment. Instead, we logically split the spin-chain by
assigning a subset Jc of Lc spins to the central system and the complement Je = ZL\Jc of
Le = L − Lc spins to the environment. Then we have Nc = 2Lc,Ne = 2Le,N = 2L. In
our numerical experiments and explicit analytical calculations, we shall consider three special
cases (in the first two cases we have to assume that L is even):

• (A) Alternating subchains, where every second spin is assigned to the central system
J A

c = {0, 2, 4, . . . , L − 2}. This situation is supposed to be a good model of a situation
where all central system’s degrees of freedom are directly coupled to the environment.

• (C) Connected subchains, where a connected half of the chain is assigned to the central
system J C

c = {0, 1, 2, . . . , L/2 − 1}. Here the central system is coupled to the
environment just at two ending points, namely j = 0 and j = L/2 − 1.
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• (S) Single spin, where the central system consists of a single spinJ S
c = {0}, i.e. a two-level

quantum system coupled to a correlated many-body environment.

Our explicit calculations will be performed for a random initial state, in other words only
state-averaged purity fidelity will be computed.

3.1. Exact calculation for the integrable case

Here we show how to extend our analytical approach [21] to solve purity fidelity decay in
the integrable case hz = 0. We start by a finite size version of the formalism, however the
final results will be most elegant and simple in the thermodynamic limit L → ∞. The main
quantity which we want to calculate is a state-averaged reduced stiffness 〈D̃〉ψ (32). As a first
step in our calculation, we have to construct a time-averaged operator Ā associated with the
perturbing operatorA. This can be done, as described in [21], by means of the invariant space
of the adjoint map U ad, which is a unitary operator defined on a linear space of (bounded)
observables as U adA = U †AU . The complete basis of this invariant space can be constructed
in terms of two sequences of 2L operators, Un, Vn, n ∈ Z2L, namely

Un =
L−1∑
j=0



σ
y

j

(
σxj

)
n−1σ

y

j+n n � 1
−σxj n = 0
σ zj

(
σxj

)
−n−1σ

z
j−n n � −1

(38)

Vn =
L−1∑
j=0



σ
y

j

(
σxj

)
n−1σ

z
j+n n � 1

1 n = 0
−σ zj

(
σxj

)
−n−1σ

y

j−n n � −1

where
(
σxj

)
k

:= ∏k
l=1 σ

x
j+l for k � 1,

(
σxj

)
0 := 1, satisfying a Lie algebra

[Um,Un] = 2i(Vm−n − Vn−m)
[Vm, Vn] = 0 (39)

[Um,Vn] = 2i(Um+n − Um−n).

We note the orthogonality

〈UnUm〉 = 〈VnVm〉 = Lδnm 〈UnVm〉 = 0. (40)

Now, the Floquet-map (36) can be written in terms of the elements of algebra (38) only, namely
U = exp(−iJU1) exp(ihxU0), and the complete basis of an invariant space

U ad�(ϕ) = �(ϕ) (41)

can be, for arbitrary finite L, written as �(ϕl) with ϕl = πl
L

, l ∈ Z2L, and

�(ϕl) =
2L−1∑
n=0

(
u(ϕl) einϕl + u(−ϕl) e−inϕl

) ·En

En ≡ (
Un,U−n, 2−1/2(Vn − V−n)

)
(42)

u(ϕ) ≡ (cotα − cotβ e−iϕ, cotα − cotβ eiϕ,
√

2i sin ϕ)

where we introduced the angles α ≡ 2J, β ≡ 2hx . Note that�(ϕ2L−l) ≡ �(ϕl) and the basis
(of non-equivalent vectors l = 0, 1, . . . , L) is orthogonal,

〈�†(ϕk)�(ϕl)〉 = 4L2|u(ϕk)|2(δk,l + δk,2L−l ). (43)
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The time average of an observable can be simply constructed by means of a projection

Ā =
L∑
l=0

〈�†(ϕl)A〉
〈�†(ϕl)�(ϕl)〉�(ϕl) (44)

namely for the magnetization A = M = U0 we have

M̄ = 1

4L

2L−1∑
l=0

Re u1(ϕl)

|u(ϕl)|2 �(ϕl). (45)

In the limit L → ∞ the phase variable becomes continuous ϕ ∈ [0, 2π) and the sums (44)
and (45) go over to integrals over ϕ. The first term of (32) is the stiffness D = 〈M̄2〉 which
can be calculated explicitly in the limit L → ∞ [21]. Finite size corrections are proven to be
smaller than any power in 1/L, i.e. they have to be exponentially small, since the argument
of the sum which is approximated by an integral over ϕ is an L-independent analytic function
of eiϕ ,

D = L
max{|cosα|, |cosβ|} − cos2 β

sin2 β
+ O(exp(−constL)). (46)

In order to calculate the remaining terms of the reduced stiffness (32) we have to compute the
reduced inner product of a pair of operators, namely

〈〈A〉J 〈B〉J 〉J ′ = 2−|J ′|−2|J | TrJ ′(TrJ ATrJ B) (47)

where J is some subset of ZL (either Jc or Je) and J ′ = ZL\J . We start with the basis
operators Un, Vn, for which we find by direct inspection of structure (38) that

〈〈Um〉J 〈Un〉J 〉J ′ = 〈〈Vm〉J 〈Vn〉J 〉J ′ = Lfnδmn
(48)

〈〈Um〉J 〈Vn〉J 〉J ′ = 0.

Here the structure function fn is defined by the number of sequential sets C(l1, l2) =
{l1, l1 + 1, . . . , l2} in ZL of length |n| + 1 which do not intersect the set J , divided by
L,

fn = 1

L
|{j ∈ ZL; C(j, j + n) ∩ J = ∅}| (49)

and is extended to Z2L by putting f−n ≡ f2L−n := fn. Using a form factor of sorts

F(ϕ) =
2L−1∑
n=0

fneinϕ (50)

we can directly write the reduced inner products within the invariant family (42) generalizing
(43), namely

〈〈�(ϕ′)†〉J 〈�(ϕ)〉J 〉J ′ = 2LRe
(
u(−ϕ′) · u(ϕ)F (ϕ − ϕ′) + u(ϕ′) ·u(ϕ)F (ϕ + ϕ′)

)
. (51)

For the calculation of (32), the reduced inner product of a time-averaged observable Ā
with itself,

〈〈Ā〉2
J
〉
J ′ is of central importance. It can be computed straightforwardly using
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expansion (44) and reduced inner products (51). For the magnetization M we obtain

GF := 1

L

〈〈M̄〉2
J
〉
J ′ = 1

4L2

2L−1∑
k=0

2L−1∑
l=0

Re u1(ϕk)Re u1(ϕl)u(ϕk)
∗ · u(ϕl)

|u(ϕk)|2|u(ϕl)|2 F(ϕl − ϕk). (52)

The factor L has been taken out in the definition of the coefficient GF in order to make it
conveniently size-independent for the thermodynamic limit. In order to proceed with explicit
calculations, we have to derive the form factors for the three different cases (A, C, S). For
each of them we have to compute two generally different reduced inner products with the form
factors, Fc for J = Jc,J ′ = Je and Fe for J = Je,J ′ = Jc, corresponding respectively to
the last two terms of (32):

• (A): Here, due to symmetry both structure functions are identical f A
n = 1

2δn,0 giving
FA

c (ϕ) = FA
e (ϕ) = 1

2 .
• (C): Again, we have a symmetry between the central system and the environment, so
f C
n = max

{
1
2 − |n|

L
, 0

}
and FC

c (ϕ) = FC
e (ϕ) = πδL/2(ϕ) where δm(ϕ) is a fat periodic

delta function,

δm(ϕ) = 1

2πm

(
sin(mϕ/2)

sin(ϕ/2)

)2

(53)

with the limit limm→∞ δm(ϕ) = ∑∞
k=−∞ δ(ϕ − 2πk).

• (S): Here, we need to consider two different structure functions f S
c,n = (L − 1 −

|n|)/L, f S
e,n = 1

L
δn,0 giving for the form factors F S

c (ϕ) = 2π(L−1)
L

δL−1(ϕ), F S
e (ϕ) = 1

L
.

Due to linear dependence ofGF onF(ϕ) (52) we need to compute only two types of the reduced
inner products besides the non-reduced one (46), namely for a constant form factor F(ϕ) = 1
and for a fat-delta form factor F(ϕ) = δm(ϕ). Tedious but straightforward calculation gives
(within accuracy O(exp(−constL)) beyond all orders)

G1 =




2 cotβ sin2(α/2) cosα > cosβ cosα + cosβ > 0
− tan(β/2) cosα < cosβ cosα + cosβ > 0
cot(β/2) cosα > cosβ cosα + cosβ < 0
2 cotβ cos2(α/2) cosα < cosβ cosα + cosβ < 0

(54)
Gδm = Gδ − 1

4πm
Gδ := D

2πL
.

The state-averaged purity fidelity in the regime of linear response (29) can be therefore
written as

〈FP(t)〉ψ = 1 − 2δ2NcNeL

(Nc + 1)(Ne + 1)
G̃t2 + O(δ4)

(55)
G̃ = 1

L

(〈M̄2〉 − 〈〈M̄〉2
J
〉
J ′ −

〈〈M̄〉2
J ′

〉
J
)

where the coefficient in the three different cases of interest reads

G̃A = 2πGδ −G1 G̃C = 1

L
G̃S = 1

L

(
2πGδ −G1 +

1

2

)
. (56)
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It is very interesting to note that only in case (A) where all environmental degrees of freedom
are coupled to the central system and vice versa, the resulting expression for purity decay
coefficient G̃ is non-vanishing in the thermodynamic limit L → ∞, so the purity fidelity
decays qualitatively in the same way as the (non-reduced) fidelity [9], namely the exponent
of quadratic decay in time has the same L dependence. In the other two cases (C, S) where
the interaction between the central system and the environment is local one has a subtle
cancellation of leading order terms giving the resulting coefficient which vanishes as ∝1/L in
the thermodynamic limit thus making the purity fidelity to decay still quadratically but on a
much longer timescale (by a factor of L) as compared to the timescale of fidelity decay [9].
Of course, our analytical results for the integrable case only give us a timescale of the purity
fidelity decay,

τ̃ne = 1

δ

√
(Nc + 1)(Ne + 1)

NcNeLG̃
(57)

but they cannot tell us anything about the global behaviour of 〈FP(t)〉ψ beyond the regime of
linear response. These analytical results are clearly confirmed by direct numerical simulations
reported in next subsection.

3.2. Numerical calculations in the general case

In the generally non-integrable cases of the kicked Ising model, we calculate the partial
correlation sums

SJ (t) = 1

L

〈〈∑
At

〉
J

〈∑
At

〉
J

〉
J ′

(58)

and the total purity correlator

SP(t) = 1

L

t−1∑
t ′,t ′′=0

CP(t
′, t ′′) = S∅(t) + SZL(t)− SJ (t)− SJ ′(t) (59)

by means of numerical simulation. With these we can calculate purity fidelity and compare
to the directly numerically simulated purity fidelity decay (and to the analytical calculation
in the integrable case). Note that S∅(t) = 1

L

〈[ ∑
At

]2〉 = 1
L

∑t−1
t ′,t ′′=0〈AAt ′−t ′′ 〉 is the usual

(non-reduced) integrated correlation function and SZL
(t) ≡ 0 due to 〈At〉 = 〈A〉 = 0. We

work with random initial states, hence in the linear response regime (sufficiently small δ) we
have an identity (29) connecting the state-averaged purity fidelity decay to the purity correlator.
Asymptotic (δ → 0) exactness of this relation has been carefully checked in all different cases
of interest since it provided a crucial test of our numerical procedures.

In the first set of numerical calculations, we check the decay of correlations, either with
respect to the full trace (non-reduced) inner product or with respect to the reduced inner
product, while in the second set of calculations we explicitly compute the purity fidelity
decay 〈FP(t)〉ψ and compare the exponents with our predictions based on correlation decay.
Calculations are performed with three different system sizes, namely L = 12, 16, 20. Since
we want the perturbation strength to have certain size L-independent effects we scale it by
fixing δ′ = δ

√
L/L0 when varying L where we choose L0 := 24. For example, in such a case

the predicted exponents of the fidelity decay [9] do not depend on L.
In figure 1 we examine the decay of non-reduced correlations of the magnetization

C(t) = 〈MMt 〉/L for the three cases: (a) integrable hz = 0.0, (b) intermediate hz = 0.4 and
(c) ergodic and mixing hz = 1.4. We find that C(t) has a non-vanishing plateau (stiffness
C̄ = D/L) in the integrable and intermediate non-integrable case, where the correlation
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Figure 2. Partial correlation sums in the mixing regime hz = 1.4 for different divisions
ZL = J ∪ J ′. The structure (alternating A versus continuous C) and/or the number Lc of
elements of the set J ′ is indicated in the label near each triple of curves (full for L = 20, dashed
for L = 16 and dotted for L = 12).

function in the integrable case agrees excellently with the analytical result for L → ∞ [21],
while in the ergodic and mixing case we find exponential decay of correlations. We note
an interesting distinction between correlation decays in integrable and intermediate cases,
namely in the integrable case (a) the relaxation of C(t) towards the plateau value D/L is a
power law ∼t−3/2 whereas in the intermediate case (b) it looks like an exponential (see inset of
figure 1(b)).

In figure 2 we show partial correlation sums SJ (t) for the ergodic and mixing case (c)
for different reducing sets J appearing in the three cases (A, C, S) of divisions. We note that
SJ (t) increases linearly in t only for the non-reduced case J = ∅ where the (non-reduced)
correlation function is homogeneous in time, whereas in all other cases SJ (t) increases slower
than linear, in fact in most cases it quickly saturates to a maximum value which does not
increase with increasing size L. Therefore, for large system sizes L in the ergodic and mixing
situation the purity correlator becomes determined by the total (non-reduced) correlator only
(confirming equation (27)), namely SP(t) = st , where s = 2.54. This is illustrated in
figure 3.

In figures 4 and 5 we show analogous results on partial correlation sums and purity
correlators in the integrable case (a). Here, SP(t) ∝ t2. Numerical results are compared with
analytical expressions (55) and (56), and the agreement is very good. In figure 6 we also
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Figure 3. Purity correlator SP(t) in the mixing regime hz = 1.4 for different cases (A, C, S and
total (non-reduced) correlator, for full, long-dashed, short-dashed and dotted curves, respectively)
as compared to the asymptotic linear increase (chain line).

show the purity correlators in the intermediate regime (b) of non-ergodic and non-integrable
dynamics, where the results are, as expected, qualitatively very similar to the integrable
case (a), namely we have the quadratic growth of purity correlators SP(t) ∝ t2.

In the second set of numerical experiments, we calculate the purity fidelity FP(t) with
respect to a random initial state |ψ〉 and average the result over a sufficient number of
realizations of random initial states such that statistical fluctuations are negligible. We note
that FP(t) is self-averaging, namely by increasing the dimension of the Hilbert space, i.e.
increasing the size L, the purity fidelity of a single random initial state converges to the state
average 〈FP (t)〉ψ . Here we are interested not only in the linear response regime but also
in the global behaviour of purity fidelity, so we chose to display the results at the (scaled)
perturbation strength δ′ = 0.01 for sufficiently long times such that the purity fidelity drops
several orders of magnitude and approaches the plateau F ∗ (34).

According to our relation (29) and the behaviour of purity correlators, we predict (and
find!) that purity fidelity decay is faster in integrable and intermediate cases (a) and (b) than
in the ergodic and mixing case (c). This result is most clear-cut in the case of division (A).
One should see figure 7 for a comparison of purity fidelity decay in the integrable and mixing
cases. We have found very good agreement with the predicted exponential decay (26) in
the mixing case (c), whereas in the integrable regime (a) numerical results suggest a global
Gaussian decay of purity fidelity (similar to the Gaussian fidelity decay found in [9]) with an
analytically computed exponent (57). Due to the finite Hilbert space dimension, we find a
saturation of purity fidelity for very long times at the plateau value which has been computed
in equation (34). In order to avoid the trivial effect of a constant term F ∗ in (33) we subtract it
and in the following plots show the quantity |FP(t)− F ∗|/(1 − F ∗). In figure 8 we show that
purity fidelity decay in the ergodic and mixing regime (c) is independent of the type of division
(A, C, S). In addition, we show in the same figure the scaling of purity fidelity in the
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Figure 4. Partial correlation sums in the integrable regime hz = 0.0 compared to the
analytically computed coefficients for different divisions indicated by labels describing the structure
(continuous/alternating) and number of elements of the set J ′.

thermodynamic limit: for fixed value of the scaled perturbation parameter δ′ the results do
not depend on the size L (for large L) provided we scale proportionally the sizes of division
sets Jc and Je. In figures 9 and 10 we show an analogous comparison of purity fidelity
decay in integrable and intermediate cases (a) and (b) for different divisions and show that,
in all cases, short time behaviour is well reproduced by the linear response coefficients
given by purity correlators. For longer times a global Gaussian behaviour with theoretical
exponents works quite well (in particular for the case (A) where again a nice scaling with
the size L approaching the thermodynamic limit was observed). Results for purity fidelity in
the intermediate case (b) (figure 10) are qualitatively the same as in the integrable case (a)
(figure 9). This is expected based on the same behaviour (∝ t2) of correlation sums (compare
figures 5 and 6).

4. Discussion

We have analysed the properties of decoherence in the framework of the question of
reversibility with a perturbed time reversed Hamiltonian. Up to now only the state correlation
function, usually called fidelity, has been discussed in this context. The calculations were
carried out in the framework of partial tracing over the environment and unitary time evolution.
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Figure 5. Purity correlator SP(t) in the integrable regime hz = 0.0 compared with analytical
expressions (sampled symbols) for different cases of divisions (A, C, S). In the inset we emphasize
the quadratic increase by plotting SP(t)/t

2 and comparing to theoretical coefficients (56) (dotted).

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200

S
P
(t

)

t

Lc=L/2, alt.
Lc=L/2, con.

Lc=1
fit, const t2

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150

S
P
(t

)/
t2

t

Figure 6. Same as in figure (5) but for the intermediate case (b). Since we have no analytical
predictions here, we compare the data by best fitting quadratic functions (sampled symbols—circles
and dotted lines in the inset) whose coefficients are later used for comparison to purity fidelity
decay.

The remaining density operator on the subspace was analysed in terms of the trace of its
square, usually called purity. It is more convenient to use this quantity rather than entropy
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Figure 7. Purity fidelity decay: comparison between mixing hz = 1.4 and integrable regime
hz = 0, at scaled perturbation δ′ = 0.01. Dotted curves give the predicted exponential (26) in
the mixing regime and a suggested Gaussian with a theoretically computed timescale (57) in the
integrable regime, while horizontal chain lines give the plateau values (34).
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Figure 8. Purity fidelity decay in the mixing regime hz = 1.4 for different types of division and
different sizes L (indicated in the legend) and δ′ = 0.01. Theoretical decay (for L → ∞) is given
by sampled symbols (circles).

itself, because its analytic form allows explicit calculations to be performed to a much larger
extent than would be the case for the entropy, where the logarithm complicates things.
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Figure 9. Same as in figure 8 but for the integrable regime (a). Note that the theoretical (Gaussian
extrapolated) curves for cases (C, S) are practically indistinguishable.
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Figure 10. Same as in figure 8 but for the intermediate regime (b).

We apply the techniques developed for the calculation of fidelity to a Hilbert space which
is a product space. Keeping track of the respective indices we can readily perform the partial
traces needed, and find that they relate to slightly modified correlation functions of quantum
observables. This allows the results for purity fidelity to be compared with those of fidelity [9].
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As for the fidelity, it becomes apparent that the decay time of correlations is a relevant
short timescale, and this induces for mixing systems an exponential decay with a timescale
that is mainly related to the strength of the perturbation. This implies a linear decay after the
end of the trivial short time ‘perturbative’ regime (related to the quantum Zeno effect) which
always leads to a quadratic decay. For integrable systems, on the other hand, correlations
do not decay and thus the quadratic decay of purity fidelity survives beyond the perturbation
regime. This amounts to the central result that decoherence will be faster for an integrable
system than for a chaotic one in strict analogy to the findings for fidelity.

The techniques developed are applied to kicked spin chains where analytic results for the
integrable case and numerical results for the correlation functions of observables can easily
be obtained. In the thermodynamic limit, we obtain exponential decay of purity fidelity
for the mixing case and Gaussian decay for the integrable case with uniform coupling to
the environment, which is simulated by assigning alternatively one spin to the environment
and one to the central system. If the spin chain is simply cut in two or if a single spin is
associated with the central system we find deviations from the Gaussian shape, but the decay
rate associated with the quadratic behaviour at short but non-perturbational times is correctly
reproduced thus maintaining the fact that even in these situations coherence decays faster in
the integrable case than in the mixing one.

The central message is thus that decoherence in echo situations follows fidelity. Indeed,
the reversibility of decoherence under perturbation of the reversed Hamiltonian is better for
mixing systems than for integrable ones, and the timescales on which this occurs depend
sensitively on the strength of this perturbation.
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